How to Transition your Career into Data Sciences, अपने करियर से डेटा साइंस के फील्ड में कैसे करें ट्रांजिट जानिये यहाँ

Safalta Experts Published by: Kanchan Pathak Updated Tue, 27 Sep 2022 09:38 PM IST

Highlights

जैसे-जैसे कंपनियों ने डेटा की शक्ति का एहसास किया है और स्मार्ट बिजनस डिसिशन लेने में इसके महत्त्व को अनुभव किया है क्वालिफायड डेटा प्रोफेशनल्स की डिमाण्ड लगातार बढ़ती चली जा रही है. कई नॉन क्वांटिटेटिव बैकग्राउंड वाले लोग भी डेटा साइंटिस्ट बनने के लिए डेटा साइंस की फील्ड में आ गए हैं. तो अगर आप भी अपने करियर को डेटा साइंस में बदलना चाहते हैं तो आइए जानते हैं कि यह कैसे संभव हो सकता है

डेटा साइंटिस्ट आज आईटी इंडस्ट्री में सबसे अधिक भुगतान वाली जॉब्स में से एक है. पिछले कुछ वर्षों में अगर कोई करियर का क्षेत्र सबसे ज्यादा आकर्षक रहा है तो वह है डेटा साइंस का क्षेत्र. जैसे-जैसे कंपनियों ने डेटा की शक्ति का एहसास किया है और स्मार्ट बिजनस डिसिशन लेने में इसके महत्त्व को अनुभव किया है क्वालिफायड डेटा प्रोफेशनल्स की डिमाण्ड लगातार बढ़ती चली जा रही है. कई नॉन क्वांटिटेटिव बैकग्राउंड वाले लोग भी डेटा साइंटिस्ट बनने के लिए डेटा साइंस की फील्ड में आ गए हैं. इसके लिए या तो उन्होंने कोई इंस्टिट्यूट ज्वाइन करके ऑफ़लाइन मोड में डेटा साइंस से सम्बन्धित डिग्री हासिल की या फिर ऑनलाइन माध्यम से अपने काम के साथ साथ डेटा साइंस पाठ्यक्रमों को भी बैलेंस किया. और इसे निश्चित रूप से एक स्मार्ट करियर मूव कह सकते हैं. तो अगर आप भी अपने करियर को डेटा साइंस में बदलना चाहते हैं तो आइए जानते हैं कि यह कैसे संभव हो सकता है.

Source: Safalta.com


 

Click here to buy a course on Digital Marketing-  Digital Marketing Specialization Course 

Free Demo Classes

Register here for Free Demo Classes


डेटा साइंस में अपनी भूमिका चुनें और अपने वर्तमान स्किल का मूल्यांकन करें

सबसे पहले तो आप डेटा साइंस में अपनी भूमिका को चुनें और अपने वर्तमान स्किल का मूल्यांकन करें. यह एक गलत धारणा है कि इस क्षेत्र में काम करने में सक्षम होने के लिए आपके पास डेटा साइंस में हायर डिग्री होनी हीं चाहिए. डेटा साइंस की परिभाषा लगातार विकसित हो रही है. दरअसल यह एक बहुत व्यापक क्षेत्र है जिसमें आप डिफरेंट बैकग्राउंड के होने पर भी ट्रांजीशन कर सकते हैं. यदि आप भी डेटा साइंस में अपना करियर शुरू करना चाहते हैं, तो आपको कुछ बेसिक टेक्निकल और थ्योरेटिकल कॉन्सेप्ट में महारत हासिल करने के साथ हीं साथ इस नॉलेज को प्रैक्टिस में ट्रांसलेट करने के लिए कम्प्यूटेशनल टूल का उपयोग सीखना चाहिए.
इसके लिए दूसरा पॉइंट है आपकी एजुकेशन और वर्क एक्सपीरियंस के आधार पर अपने करेंट स्किलसेट का मूल्यांकन करना. इससे आपको अपनी पसंद अपनी स्ट्रेन्थ और अपनी वीकनेस के पॉइंट्स को परिभाषित करने में मदद मिलेगी और जिससे एक बेहतर ट्रांजीशन प्लान बनाया जा सकता है. उदाहरण के लिए, यदि आपके पास एक सॉफ्टवेयर इंजीनियरिंग का बैकग्राउंड है, तो आपके लिए यह बेहतर होगा कि आप डिप्लॉयमेंट और ऑपरेशनल पार्ट को लक्षित करें. नॉन क्वांटिटेटिव डिग्री में भी यही लागू होता है. इसी तरह यदि आपके पास बिजनस बैकग्राउंड या इकोनॉमिक्स की डिग्री है, तो आप फिनटेक इंडस्ट्री में डेटा साइंस पोजीशंस को टार्गेट कर सकते हैं.


प्रतिस्पर्धाओं से भरा हुआ है फील्ड

यह ध्यान रखना काफी महत्वपूर्ण है कि वर्तमान में डेटा साइंस का फील्ड प्रतिस्पर्धाओं से भरा हुआ है खासकर यदि आप एक फ्रेशर हैं तो आपके लिए एंट्री-लेवल डेटा साइंस जॉब या डेटा साइंस इंटर्नशिप तक पहुँचना भी कठिन से कठिनतर हो सकता है. इसलिए, अपनी स्ट्रेन्थ के बिंदुओं को जानना और उसी के उपयुक्त पदों को टार्गेट करने का प्रयास करना अच्छा होगा, क्योंकि यह आपको भीड़ से अलग कर देगा. इसके अलावा, आपको पोजीशनिंग के प्रति फ्लेक्सिबिलिटी रखना चाहिए. भले ही आपका अल्टीमेट गोल SQL डेवलपर, डेटा साइंटिस्ट, या मशीन लर्निंग इंजीनियर बनना है, शुरू में किसी भी डेटा से संबंधित पदों पर काम करना, साथ ही डेटा साइंस कोर्स के साथ आवश्यक स्किल का निर्माण करना आपके सपनों की जॉब की दिशा में एक बहुत अच्छा कदम होता है.


डेटा साइंस में ट्रांजीशन के लिए आवश्यक टेक्निकल स्किल सीखें

जैसा कि मैंने ऊपर उल्लेख किया है, कि डेटा विज्ञान एक मल्टीडिसिप्लिनरी फील्ड है और ऐसे कई स्किल और टूल्स हैं जिन्हें आपको डोमेन और भूमिका की मुख्य जिम्मेदारियों के आधार पर समझने की आवश्यकता होगी. आप चाहे एक डेटा साइंटिस्ट, डेटा एनालिस्ट, या बिजनस एनालिस्ट जो भी बनना चाहते हों, ऐसे बुनियादी सिद्धांतों को आप संभवतः छोड़ नहीं सकते.
अगर आपके पास कोई टेक्निकल बैकग्राउंड नहीं है तो आपको अपने वर्तमान एक्सपीरियंस कॉम्पेटेंसिज के आधार पर उन स्किल्स को कस्टमाइज करना चाहिए जिनमें आपको मास्टर करने की आवश्यकता है. जैसे -


मैथमेटिक्स

बेसिक मैथमेटिक्स सीखना डेटा साइंस की आपकी यात्रा में सैद्धांतिक आधार के रूप में काम करेगा. मैथमेटिक्स एक अनंत विषय है, लेकिन प्रत्येक डेटा साइंस प्रोफेशनल  के लिए 2 सबफील्ड जानना आवश्यक हैं - कैलकुलस और लीनियर अलजेब्रा. यह आपको जटिल मशीन लर्निंग और डीप लर्निंग कॉन्सेप्ट को समझने के साथ-साथ एक मजबूत एनालिटिकल माइंडसेट को विकसित करने में सक्षम करेंगे.


स्टेटिस्टिक्स

स्टेटिस्टिक्स में संख्यात्मक डेटा का कलेक्शन, आर्गेनाइजेशन, एनालिसिस, इंटरप्रिटेशन और न्यूमेरिकल डाटा का प्रेजेंटेशन शामिल है. यह डेटा साइंस के स्तंभों में से एक माना जाता है. यह बड़े पैमाने पर डेटा एक्सप्लोरेशन और एनालिसिस के साथ-साथ स्टैटिस्टिकल टेस्ट और एनालिसिस को डिजाइन करने में लागू होता है.


लीनियर अलजेब्रा

लीनियर अलजेब्रा लीनियर इक्वेशन और उसके रीप्रेजेंटेशन का मैट्रिक्स के माध्यम से व्याख्या करता है. डेटा साइंटिस्ट न केवल डेटा सेट को प्रभावी ढंग से ट्रांसफॉर्म और मैनीपुलेट करने के लिए लीनियर अलजेब्रा टेक्निक्स को अप्लाई करते हैं, बल्कि यह भी समझते हैं कि अधिकांश मशीन लर्निंग और डीप लर्निंग एल्गोरिदम कैसे काम करते हैं.
यदि आपका मैथमेटिक्स स्ट्रोंग नहीं है, तो आप 365 डेटा साइंस मैथमेटिक्स कोर्स को ट्राय कर सकते हैं. यह सभी एस्पायरिंग डेटा साइंस प्रोफेशनल्स के लिए लीनियर अलजेब्रा के सभी इम्पोर्टेन्ट कांसेप्ट्स को शामिल करता है.


प्रोग्रामिंग

प्रोग्रामिंग जानना निस्संदेह प्रत्येक डेटा साइंस प्रोफेशनल के लिए बहुत जरूरी है. बड़े डेटा सेट के साथ काम करते समय कम्प्यूटेशनल कांसेप्ट्स का उपयोग करने से आप उन्हें आसानी से मॉडल कर सकते हैं. और यह डेटा साइंस में प्रोग्रामिंग के अनगिनत एप्लीकेशन का एक छोटा सा हिस्सा है.


कैलकुलस

कैलकुलस में हम क्वान्टिटी और लेन्थ के परिवर्तन की दर और ऑब्जेक्ट की लेन्थ, एरिया और वोल्यूम का अध्ययन करते हैं. यह मशीन लर्निंग का एक महत्वपूर्ण हिस्सा है, जिसका व्यापक रूप से मशीन लर्निंग मॉडल के अनुकूलन में उपयोग किया जाता है.
 

Related Article

Nepali Student Suicide Row: Students fear returning to KIIT campus; read details here

Read More

NEET MDS 2025 Registration begins at natboard.edu.in; Apply till March 10, Check the eligibility and steps to apply here

Read More

NEET MDS 2025: नीट एमडीएस के लिए आवेदन शुरू, 10 मार्च से पहले कर लें पंजीकरण; 19 अप्रैल को होगी परीक्षा

Read More

UPSC CSE 2025: यूपीएससी सिविल सेवा परीक्षा के लिए आवेदन करने की अंतिम तिथि बढ़ी, इस तारीख तक भर सकेंगे फॉर्म

Read More

UPSC further extends last date to apply for civil services prelims exam till Feb 21; read details here

Read More

Jhakhand: CM launches six portals to modernise state's education system

Read More

PPC 2025: आठवें और अंतिम एपिसोड में शामिल रहें यूपीएससी, सीबीएससी के टॉपर्स, रिवीजन के लिए साझा किए टिप्स

Read More

RRB Ministerial, Isolated Recruitment Application Deadline extended; Apply till 21 February now, Read here

Read More

RRB JE CBT 2 Exam Date: आरआरबी जेई सीबीटी-2 की संभावित परीक्षा तिथियां घोषित, 18799 पदों पर होगी भर्ती

Read More